Logo Search packages:      
Sourcecode: virtualbox-ose version File versions

MM.cpp

Go to the documentation of this file.
/* $Id: MM.cpp 29865 2008-04-18 15:16:47Z umoeller $ */
/** @file
 * MM - Memory Monitor(/Manager).
 */

/*
 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
 *
 * This file is part of VirtualBox Open Source Edition (OSE), as
 * available from http://www.virtualbox.org. This file is free software;
 * you can redistribute it and/or modify it under the terms of the GNU
 * General Public License (GPL) as published by the Free Software
 * Foundation, in version 2 as it comes in the "COPYING" file of the
 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
 * Clara, CA 95054 USA or visit http://www.sun.com if you need
 * additional information or have any questions.
 */


/** @page pg_mm     MM - The Memory Monitor/Manager
 *
 * WARNING: THIS IS SOMEWHAT OUTDATED!
 *
 * It seems like this is going to be the entity taking care of memory allocations
 * and the locking of physical memory for a VM. MM will track these allocations and
 * pinnings so pointer conversions, memory read and write, and correct clean up can
 * be done.
 *
 * Memory types:
 *      - Hypervisor Memory Area (HMA).
 *      - Page tables.
 *      - Physical pages.
 *
 * The first two types are not accessible using the generic conversion functions
 * for GC memory, there are special functions for these.
 *
 *
 * A decent structure for this component need to be eveloped as we see usage. One
 * or two rewrites is probabaly needed to get it right...
 *
 *
 *
 * @section         Hypervisor Memory Area
 *
 * The hypervisor is give 4MB of space inside the guest, we assume that we can
 * steal an page directory entry from the guest OS without cause trouble. In
 * addition to these 4MB we'll be mapping memory for the graphics emulation,
 * but that will be an independant mapping.
 *
 * The 4MBs are divided into two main parts:
 *      -# The static code and data
 *      -# The shortlived page mappings.
 *
 * The first part is used for the VM structure, the core code (VMMSwitch),
 * GC modules, and the alloc-only-heap. The size will be determined at a
 * later point but initially we'll say 2MB of locked memory, most of which
 * is non contiguous physically.
 *
 * The second part is used for mapping pages to the hypervisor. We'll be using
 * a simple round robin when doing these mappings. This means that no-one can
 * assume that a mapping hangs around for very long, while the managing of the
 * pages are very simple.
 *
 *
 *
 * @section         Page Pool
 *
 * The MM manages a per VM page pool from which other components can allocate
 * locked, page aligned and page granular memory objects. The pool provides
 * facilities to convert back and forth between physical and virtual addresses
 * (within the pool of course). Several specialized interfaces are provided
 * for the most common alloctions and convertions to save the caller from
 * bothersome casting and extra parameter passing.
 *
 *
 */



/*******************************************************************************
*   Header Files                                                               *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_MM
#include <VBox/mm.h>
#include <VBox/pgm.h>
#include <VBox/cfgm.h>
#include <VBox/ssm.h>
#include <VBox/gmm.h>
#include "MMInternal.h"
#include <VBox/vm.h>
#include <VBox/uvm.h>
#include <VBox/err.h>
#include <VBox/param.h>

#include <VBox/log.h>
#include <iprt/alloc.h>
#include <iprt/assert.h>
#include <iprt/string.h>


/*******************************************************************************
*   Defined Constants And Macros                                               *
*******************************************************************************/
/** The current saved state versino of MM. */
00108 #define MM_SAVED_STATE_VERSION      2


/*******************************************************************************
*   Internal Functions                                                         *
*******************************************************************************/
static DECLCALLBACK(int) mmR3Save(PVM pVM, PSSMHANDLE pSSM);
static DECLCALLBACK(int) mmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);


/**
 * Initializes the MM members of the UVM.
 *
 * This is currently only the ring-3 heap.
 *
 * @returns VBox status code.
 * @param   pUVM    Pointer to the user mode VM structure.
 */
00126 MMR3DECL(int) MMR3InitUVM(PUVM pUVM)
{
    /*
     * Assert sizes and order.
     */
    AssertCompile(sizeof(pUVM->mm.s) <= sizeof(pUVM->mm.padding));
    AssertRelease(sizeof(pUVM->mm.s) <= sizeof(pUVM->mm.padding));
    Assert(!pUVM->mm.s.pHeap);

    /*
     * Init the heap.
     */
    return mmR3HeapCreateU(pUVM, &pUVM->mm.s.pHeap);
}


/**
 * Initializes the MM.
 *
 * MM is managing the virtual address space (among other things) and
 * setup the hypvervisor memory area mapping in the VM structure and
 * the hypvervisor alloc-only-heap. Assuming the current init order
 * and components the hypvervisor memory area looks like this:
 *      -# VM Structure.
 *      -# Hypervisor alloc only heap (also call Hypervisor memory region).
 *      -# Core code.
 *
 * MM determins the virtual address of the hypvervisor memory area by
 * checking for location at previous run. If that property isn't available
 * it will choose a default starting location, currently 0xe0000000.
 *
 * @returns VBox status code.
 * @param   pVM         The VM to operate on.
 */
MMR3DECL(int) MMR3Init(PVM pVM)
{
    LogFlow(("MMR3Init\n"));

    /*
     * Assert alignment, sizes and order.
     */
    AssertRelease(!(RT_OFFSETOF(VM, mm.s) & 31));
    AssertRelease(sizeof(pVM->mm.s) <= sizeof(pVM->mm.padding));
    AssertMsg(pVM->mm.s.offVM == 0, ("Already initialized!\n"));

    /*
     * Init the structure.
     */
    pVM->mm.s.offVM = RT_OFFSETOF(VM, mm);
    pVM->mm.s.offLookupHyper = NIL_OFFSET;

    /*
     * Init the page pool.
     */
    int rc = mmR3PagePoolInit(pVM);
    if (VBOX_SUCCESS(rc))
    {
        /*
         * Init the hypervisor related stuff.
         */
        rc = mmR3HyperInit(pVM);
        if (VBOX_SUCCESS(rc))
        {
            /*
             * Register the saved state data unit.
             */
            rc = SSMR3RegisterInternal(pVM, "mm", 1, MM_SAVED_STATE_VERSION, sizeof(uint32_t) * 2,
                                       NULL, mmR3Save, NULL,
                                       NULL, mmR3Load, NULL);
            if (VBOX_SUCCESS(rc))
                return rc;

            /* .... failure .... */
        }
    }
    MMR3Term(pVM);
    return rc;
}


/**
 * Initializes the MM parts which depends on PGM being initialized.
 *
 * @returns VBox status code.
 * @param   pVM         The VM to operate on.
 * @remark  No cleanup necessary since MMR3Term() will be called on failure.
 */
MMR3DECL(int) MMR3InitPaging(PVM pVM)
{
    LogFlow(("MMR3InitPaging:\n"));

    /*
     * Query the CFGM values.
     */
    int rc;
    PCFGMNODE pMMCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "MM");
    if (pMMCfg)
    {
        rc = CFGMR3InsertNode(CFGMR3GetRoot(pVM), "MM", &pMMCfg);
        AssertRCReturn(rc, rc);
    }

    /** @cfgm{RamPreAlloc, boolean, false}
     * Indicates whether the base RAM should all be allocated before starting
     * the VM (default), or if it should be allocated when first written to.
     */
    bool fPreAlloc;
    rc = CFGMR3QueryBool(CFGMR3GetRoot(pVM), "RamPreAlloc", &fPreAlloc);
    if (rc == VERR_CFGM_VALUE_NOT_FOUND)
        fPreAlloc = false;
    else
        AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"RamPreAlloc\", rc=%Vrc.\n", rc), rc);

    /** @cfgm{RamSize, uint64_t, 0, 0, UINT64_MAX}
     * Specifies the size of the base RAM that is to be set up during
     * VM initialization.
     */
    uint64_t cbRam;
    rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
    if (rc == VERR_CFGM_VALUE_NOT_FOUND)
        cbRam = 0;
    else
        AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"RamSize\", rc=%Vrc.\n", rc), rc);

    cbRam &= X86_PTE_PAE_PG_MASK;
    pVM->mm.s.cbRamBase = cbRam;            /* Warning: don't move this code to MMR3Init without fixing REMR3Init.  */
    Log(("MM: %RU64 bytes of RAM%s\n", cbRam, fPreAlloc ? " (PreAlloc)" : ""));

    /** @cfgm{MM/Policy, string, no overcommitment}
     * Specifies the policy to use when reserving memory for this VM. The recognized
     * value is 'no overcommitment' (default). See GMMPOLICY.
     */
    GMMOCPOLICY enmPolicy;
    char sz[64];
    rc = CFGMR3QueryString(CFGMR3GetRoot(pVM), "Policy", sz, sizeof(sz));
    if (RT_SUCCESS(rc))
    {
        if (    !RTStrICmp(sz, "no_oc")
            ||  !RTStrICmp(sz, "no overcommitment"))
            enmPolicy = GMMOCPOLICY_NO_OC;
        else
            return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, "Unknown \"MM/Policy\" value \"%s\"", sz);
    }
    else if (rc == VERR_CFGM_VALUE_NOT_FOUND)
        enmPolicy = GMMOCPOLICY_NO_OC;
    else
        AssertMsgRCReturn(rc, ("Configuration error: Failed to query string \"MM/Policy\", rc=%Vrc.\n", rc), rc);

    /** @cfgm{MM/Priority, string, normal}
     * Specifies the memory priority of this VM. The priority comes into play when the
     * system is overcommitted and the VMs needs to be milked for memory. The recognized
     * values are 'low', 'normal' (default) and 'high'. See GMMPRIORITY.
     */
    GMMPRIORITY enmPriority;
    rc = CFGMR3QueryString(CFGMR3GetRoot(pVM), "Priority", sz, sizeof(sz));
    if (RT_SUCCESS(rc))
    {
        if (!RTStrICmp(sz, "low"))
            enmPriority = GMMPRIORITY_LOW;
        else if (!RTStrICmp(sz, "normal"))
            enmPriority = GMMPRIORITY_NORMAL;
        else if (!RTStrICmp(sz, "high"))
            enmPriority = GMMPRIORITY_HIGH;
        else
            return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, "Unknown \"MM/Priority\" value \"%s\"", sz);
    }
    else if (rc == VERR_CFGM_VALUE_NOT_FOUND)
        enmPriority = GMMPRIORITY_NORMAL;
    else
        AssertMsgRCReturn(rc, ("Configuration error: Failed to query string \"MM/Priority\", rc=%Vrc.\n", rc), rc);

    /*
     * Make the initial memory reservation with GMM.
     */
    rc = GMMR3InitialReservation(pVM, cbRam >> PAGE_SHIFT, 1, 1, enmPolicy, enmPriority);
    if (RT_FAILURE(rc))
    {
        if (rc == VERR_GMM_MEMORY_RESERVATION_DECLINED)
            return VMSetError(pVM, rc, RT_SRC_POS,
                              N_("Insufficient free memory to start the VM (cbRam=%#RX64 enmPolicy=%d enmPriority=%d)"),
                              cbRam, enmPolicy, enmPriority);
        return VMSetError(pVM, rc, RT_SRC_POS, "GMMR3InitialReservation(,%#RX64,0,0,%d,%d)",
                          cbRam >> PAGE_SHIFT, enmPolicy, enmPriority);
    }

    /*
     * If RamSize is 0 we're done now.
     */
    if (cbRam < PAGE_SIZE)
    {
        Log(("MM: No RAM configured\n"));
        return VINF_SUCCESS;
    }

    /*
     * Setup the base ram (PGM).
     */
    rc = PGMR3PhysRegisterRam(pVM, 0, cbRam, "Base RAM");
#ifdef VBOX_WITH_NEW_PHYS_CODE
    if (RT_SUCCESS(rc) && fPreAlloc)
    {
        /** @todo RamPreAlloc should be handled at the very end of the VM creation. (lazy bird) */
        return VM_SET_ERROR(pVM, VERR_NOT_IMPLEMENTED, "TODO: RamPreAlloc");
    }
#else
    if (RT_SUCCESS(rc))
    {
        /*
         * Allocate the first chunk, as we'll map ROM ranges there.
         * If requested, allocated the rest too.
         */
        RTGCPHYS GCPhys = (RTGCPHYS)0;
        rc = PGM3PhysGrowRange(pVM, &GCPhys);
        if (RT_SUCCESS(rc) && fPreAlloc)
            for (GCPhys = PGM_DYNAMIC_CHUNK_SIZE;
                 GCPhys < cbRam && RT_SUCCESS(rc);
                 GCPhys += PGM_DYNAMIC_CHUNK_SIZE)
                rc = PGM3PhysGrowRange(pVM, &GCPhys);
    }
#endif

    LogFlow(("MMR3InitPaging: returns %Vrc\n", rc));
    return rc;
}


/**
 * Terminates the MM.
 *
 * Termination means cleaning up and freeing all resources,
 * the VM it self is at this point powered off or suspended.
 *
 * @returns VBox status code.
 * @param   pVM         The VM to operate on.
 */
MMR3DECL(int) MMR3Term(PVM pVM)
{
    /*
     * Destroy the page pool. (first as it used the hyper heap)
     */
    mmR3PagePoolTerm(pVM);

    /*
     * Release locked memory.
     * (Associated record are released by the heap.)
     */
    PMMLOCKEDMEM pLockedMem = pVM->mm.s.pLockedMem;
    while (pLockedMem)
    {
        int rc = SUPPageUnlock(pLockedMem->pv);
        AssertMsgRC(rc, ("SUPPageUnlock(%p) -> rc=%d\n", pLockedMem->pv, rc));
        switch (pLockedMem->eType)
        {
            case MM_LOCKED_TYPE_HYPER:
                rc = SUPPageFree(pLockedMem->pv, pLockedMem->cb >> PAGE_SHIFT);
                AssertMsgRC(rc, ("SUPPageFree(%p) -> rc=%d\n", pLockedMem->pv, rc));
                break;
            case MM_LOCKED_TYPE_HYPER_NOFREE:
            case MM_LOCKED_TYPE_HYPER_PAGES:
            case MM_LOCKED_TYPE_PHYS:
                /* nothing to do. */
                break;
        }
        /* next */
        pLockedMem = pLockedMem->pNext;
    }

    /*
     * Zero stuff to detect after termination use of the MM interface
     */
    pVM->mm.s.offLookupHyper = NIL_OFFSET;
    pVM->mm.s.pLockedMem     = NULL;
    pVM->mm.s.pHyperHeapHC   = NULL;    /* freed above. */
    pVM->mm.s.pHyperHeapGC   = 0;       /* freed above. */
    pVM->mm.s.offVM          = 0;       /* init assertion on this */

    return 0;
}


/**
 * Terminates the UVM part of MM.
 *
 * Termination means cleaning up and freeing all resources,
 * the VM it self is at this point powered off or suspended.
 *
 * @returns VBox status code.
 * @param   pUVM        Pointer to the user mode VM structure.
 */
00415 MMR3DECL(void) MMR3TermUVM(PUVM pUVM)
{
    /*
     * Destroy the heap.
     */
    mmR3HeapDestroy(pUVM->mm.s.pHeap);
    pUVM->mm.s.pHeap = NULL;
}


/**
 * Reset notification.
 *
 * MM will reload shadow ROMs into RAM at this point and make
 * the ROM writable.
 *
 * @param   pVM             The VM handle.
 */
MMR3DECL(void) MMR3Reset(PVM pVM)
{
    mmR3PhysRomReset(pVM);
}


/**
 * Execute state save operation.
 *
 * @returns VBox status code.
 * @param   pVM             VM Handle.
 * @param   pSSM            SSM operation handle.
 */
static DECLCALLBACK(int) mmR3Save(PVM pVM, PSSMHANDLE pSSM)
{
    LogFlow(("mmR3Save:\n"));

    /* (PGM saves the physical memory.) */
    SSMR3PutU64(pSSM, pVM->mm.s.cBasePages);
    return SSMR3PutU64(pSSM, pVM->mm.s.cbRamBase);
}


/**
 * Execute state load operation.
 *
 * @returns VBox status code.
 * @param   pVM             VM Handle.
 * @param   pSSM            SSM operation handle.
 * @param   u32Version      Data layout version.
 */
static DECLCALLBACK(int) mmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
{
    LogFlow(("mmR3Load:\n"));

    /*
     * Validate version.
     */
    if (    SSM_VERSION_MAJOR_CHANGED(u32Version, MM_SAVED_STATE_VERSION)
        ||  !u32Version)
    {
        Log(("mmR3Load: Invalid version u32Version=%d!\n", u32Version));
        return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
    }

    /*
     * Check the cBasePages and cbRamBase values.
     */
    int rc;
    RTUINT cb1;

    /* cBasePages */
    uint64_t cPages;
    if (u32Version != 1)
        rc = SSMR3GetU64(pSSM, &cPages);
    else
    {
        rc = SSMR3GetUInt(pSSM, &cb1);
        cPages = cb1 >> PAGE_SHIFT;
    }
    if (VBOX_FAILURE(rc))
        return rc;
    if (cPages != pVM->mm.s.cBasePages)
    {
        Log(("mmR3Load: Memory configuration has changed. cPages=%#RX64 saved=%#RX64\n", pVM->mm.s.cBasePages, cPages));
        return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH;
    }

    /* cbRamBase */
    uint64_t cb;
    if (u32Version != 1)
        rc = SSMR3GetU64(pSSM, &cb);
    else
    {
        rc = SSMR3GetUInt(pSSM, &cb1);
        cb = cb1;
    }
    if (VBOX_FAILURE(rc))
        return rc;
    if (cb != pVM->mm.s.cbRamBase)
    {
        Log(("mmR3Load: Memory configuration has changed. cbRamBase=%#RX64 save=%#RX64\n", pVM->mm.s.cbRamBase, cb));
        return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH;
    }

    /* (PGM restores the physical memory.) */
    return rc;
}


/**
 * Updates GMM with memory reservation changes.
 *
 * Called when MM::cbRamRegistered, MM::cShadowPages or MM::cFixedPages changes.
 *
 * @returns VBox status code - see GMMR0UpdateReservation.
 * @param   pVM             The shared VM structure.
 */
int mmR3UpdateReservation(PVM pVM)
{
    VM_ASSERT_EMT(pVM);
    if (pVM->mm.s.fDoneMMR3InitPaging)
        return GMMR3UpdateReservation(pVM,
                                      RT_MAX(pVM->mm.s.cBasePages, 1),
                                      RT_MAX(pVM->mm.s.cShadowPages, 1),
                                      RT_MAX(pVM->mm.s.cFixedPages, 1));
    return VINF_SUCCESS;
}


/**
 * Interface for PGM to increase the reservation of RAM and ROM pages.
 *
 * This can be called before MMR3InitPaging.
 *
 * @returns VBox status code. Will set VM error on failure.
 * @param   pVM             The shared VM structure.
 * @param   cAddBasePages   The number of pages to add.
 */
MMR3DECL(int) MMR3IncreaseBaseReservation(PVM pVM, uint64_t cAddBasePages)
{
    uint64_t cOld = pVM->mm.s.cBasePages;
    pVM->mm.s.cBasePages += cAddBasePages;
    LogFlow(("MMR3IncreaseBaseReservation: +%RU64 (%RU64 -> %RU64\n", cAddBasePages, cOld, pVM->mm.s.cBasePages));
    int rc = mmR3UpdateReservation(pVM);
    if (RT_FAILURE(rc))
    {
        VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to reserved physical memory for the RAM (%#RX64 -> %#RX64)"), cOld, pVM->mm.s.cBasePages);
        pVM->mm.s.cBasePages = cOld;
    }
    return rc;
}


/**
 * Interface for PGM to adjust the reservation of fixed pages.
 *
 * This can be called before MMR3InitPaging.
 *
 * @returns VBox status code. Will set VM error on failure.
 * @param   pVM                 The shared VM structure.
 * @param   cDeltaFixedPages    The number of pages to add (positive) or subtract (negative).
 * @param   pszDesc             Some description associated with the reservation.
 */
MMR3DECL(int) MMR3AdjustFixedReservation(PVM pVM, int32_t cDeltaFixedPages, const char *pszDesc)
{
    const uint32_t cOld = pVM->mm.s.cFixedPages;
    pVM->mm.s.cFixedPages += cDeltaFixedPages;
    LogFlow(("MMR3AdjustFixedReservation: %d (%u -> %u)\n", cDeltaFixedPages, cOld, pVM->mm.s.cFixedPages));
    int rc = mmR3UpdateReservation(pVM);
    if (RT_FAILURE(rc))
    {
        VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to reserve physical memory (%#x -> %#x; %s)"),
                   cOld, pVM->mm.s.cFixedPages, pszDesc);
        pVM->mm.s.cFixedPages = cOld;
    }
    return rc;
}


/**
 * Interface for PGM to update the reservation of shadow pages.
 *
 * This can be called before MMR3InitPaging.
 *
 * @returns VBox status code. Will set VM error on failure.
 * @param   pVM             The shared VM structure.
 * @param   cShadowPages    The new page count.
 */
MMR3DECL(int) MMR3UpdateShadowReservation(PVM pVM, uint32_t cShadowPages)
{
    const uint32_t cOld = pVM->mm.s.cShadowPages;
    pVM->mm.s.cShadowPages = cShadowPages;
    LogFlow(("MMR3UpdateShadowReservation: %u -> %u\n", cOld, pVM->mm.s.cShadowPages));
    int rc = mmR3UpdateReservation(pVM);
    if (RT_FAILURE(rc))
    {
        VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to reserve physical memory for shadow page tables (%#x -> %#x)"), cOld, pVM->mm.s.cShadowPages);
        pVM->mm.s.cShadowPages = cOld;
    }
    return rc;
}


/**
 * Locks physical memory which backs a virtual memory range (HC) adding
 * the required records to the pLockedMem list.
 *
 * @returns VBox status code.
 * @param   pVM             The VM handle.
 * @param   pv              Pointer to memory range which shall be locked down.
 *                          This pointer is page aligned.
 * @param   cb              Size of memory range (in bytes). This size is page aligned.
 * @param   eType           Memory type.
 * @param   ppLockedMem     Where to store the pointer to the created locked memory record.
 *                          This is optional, pass NULL if not used.
 * @param   fSilentFailure  Don't raise an error when unsuccessful. Upper layer with deal with it.
 */
int mmR3LockMem(PVM pVM, void *pv, size_t cb, MMLOCKEDTYPE eType, PMMLOCKEDMEM *ppLockedMem, bool fSilentFailure)
{
    Assert(RT_ALIGN_P(pv, PAGE_SIZE) == pv);
    Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);

    if (ppLockedMem)
        *ppLockedMem = NULL;

    /*
     * Allocate locked mem structure.
     */
    unsigned        cPages = cb >> PAGE_SHIFT;
    AssertReturn(cPages == (cb >> PAGE_SHIFT), VERR_OUT_OF_RANGE);
    PMMLOCKEDMEM    pLockedMem = (PMMLOCKEDMEM)MMR3HeapAlloc(pVM, MM_TAG_MM, RT_OFFSETOF(MMLOCKEDMEM, aPhysPages[cPages]));
    if (!pLockedMem)
        return VERR_NO_MEMORY;
    pLockedMem->pv      = pv;
    pLockedMem->cb      = cb;
    pLockedMem->eType   = eType;
    memset(&pLockedMem->u, 0, sizeof(pLockedMem->u));

    /*
     * Lock the memory.
     */
    int rc = SUPPageLock(pv, cPages, &pLockedMem->aPhysPages[0]);
    if (VBOX_SUCCESS(rc))
    {
        /*
         * Setup the reserved field.
         */
        PSUPPAGE    pPhysPage = &pLockedMem->aPhysPages[0];
        for (unsigned c = cPages; c > 0; c--, pPhysPage++)
            pPhysPage->uReserved = (RTHCUINTPTR)pLockedMem;

        /*
         * Insert into the list.
         *
         * ASSUME no protected needed here as only one thread in the system can possibly
         * be doing this. No other threads will walk this list either we assume.
         */
        pLockedMem->pNext = pVM->mm.s.pLockedMem;
        pVM->mm.s.pLockedMem = pLockedMem;
        /* Set return value. */
        if (ppLockedMem)
            *ppLockedMem = pLockedMem;
    }
    else
    {
        AssertMsgFailed(("SUPPageLock failed with rc=%d\n", rc));
        MMR3HeapFree(pLockedMem);
        if (!fSilentFailure)
            rc = VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to lock %d bytes of host memory (out of memory)"), cb);
    }

    return rc;
}


/**
 * Maps a part of or an entire locked memory region into the guest context.
 *
 * @returns VBox status.
 *          God knows what happens if we fail...
 * @param   pVM         VM handle.
 * @param   pLockedMem  Locked memory structure.
 * @param   Addr        GC Address where to start the mapping.
 * @param   iPage       Page number in the locked memory region.
 * @param   cPages      Number of pages to map.
 * @param   fFlags      See the fFlags argument of PGR3Map().
 */
int mmR3MapLocked(PVM pVM, PMMLOCKEDMEM pLockedMem, RTGCPTR Addr, unsigned iPage, size_t cPages, unsigned fFlags)
{
    /*
     * Adjust ~0 argument
     */
    if (cPages == ~(size_t)0)
        cPages = (pLockedMem->cb >> PAGE_SHIFT) - iPage;
    Assert(cPages != ~0U);
    /* no incorrect arguments are accepted */
    Assert(RT_ALIGN_GCPT(Addr, PAGE_SIZE, RTGCPTR) == Addr);
    AssertMsg(iPage < (pLockedMem->cb >> PAGE_SHIFT), ("never even think about giving me a bad iPage(=%d)\n", iPage));
    AssertMsg(iPage + cPages <= (pLockedMem->cb >> PAGE_SHIFT), ("never even think about giving me a bad cPages(=%d)\n", cPages));

    /*
     * Map the the pages.
     */
    PSUPPAGE    pPhysPage = &pLockedMem->aPhysPages[iPage];
    while (cPages)
    {
        RTHCPHYS HCPhys = pPhysPage->Phys;
        int rc = PGMMap(pVM, Addr, HCPhys, PAGE_SIZE, fFlags);
        if (VBOX_FAILURE(rc))
        {
            /** @todo how the hell can we do a proper bailout here. */
            return rc;
        }

        /* next */
        cPages--;
        iPage++;
        pPhysPage++;
        Addr += PAGE_SIZE;
    }

    return VINF_SUCCESS;
}


/**
 * Convert HC Physical address to HC Virtual address.
 *
 * @returns VBox status.
 * @param   pVM         VM handle.
 * @param   HCPhys      The host context virtual address.
 * @param   ppv         Where to store the resulting address.
 * @thread  The Emulation Thread.
 */
MMR3DECL(int) MMR3HCPhys2HCVirt(PVM pVM, RTHCPHYS HCPhys, void **ppv)
{
    /*
     * Try page tables.
     */
    int rc = MMPagePhys2PageTry(pVM, HCPhys, ppv);
    if (VBOX_SUCCESS(rc))
        return rc;

    /*
     * Iterate the locked memory - very slow.
     */
    uint32_t off = HCPhys & PAGE_OFFSET_MASK;
    HCPhys &= X86_PTE_PAE_PG_MASK;
    for (PMMLOCKEDMEM pCur = pVM->mm.s.pLockedMem; pCur; pCur = pCur->pNext)
    {
        size_t iPage = pCur->cb >> PAGE_SHIFT;
        while (iPage-- > 0)
            if ((pCur->aPhysPages[iPage].Phys & X86_PTE_PAE_PG_MASK) == HCPhys)
            {
                *ppv = (char *)pCur->pv + (iPage << PAGE_SHIFT) + off;
                return VINF_SUCCESS;
            }
    }
    /* give up */
    return VERR_INVALID_POINTER;
}


/**
 * Read memory from GC virtual address using the current guest CR3.
 *
 * @returns VBox status.
 * @param   pVM         VM handle.
 * @param   pvDst       Destination address (HC of course).
 * @param   GCPtr       GC virtual address.
 * @param   cb          Number of bytes to read.
 */
MMR3DECL(int) MMR3ReadGCVirt(PVM pVM, void *pvDst, RTGCPTR GCPtr, size_t cb)
{
    if (GCPtr - pVM->mm.s.pvHyperAreaGC < pVM->mm.s.cbHyperArea)
        return MMR3HyperReadGCVirt(pVM, pvDst, GCPtr, cb);
    return PGMPhysReadGCPtr(pVM, pvDst, GCPtr, cb);
}


/**
 * Write to memory at GC virtual address translated using the current guest CR3.
 *
 * @returns VBox status.
 * @param   pVM         VM handle.
 * @param   GCPtrDst    GC virtual address.
 * @param   pvSrc       The source address (HC of course).
 * @param   cb          Number of bytes to read.
 */
MMR3DECL(int) MMR3WriteGCVirt(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
{
    if (GCPtrDst - pVM->mm.s.pvHyperAreaGC < pVM->mm.s.cbHyperArea)
        return VERR_ACCESS_DENIED;
    return PGMPhysWriteGCPtr(pVM, GCPtrDst, pvSrc, cb);
}


Generated by  Doxygen 1.6.0   Back to index