Logo Search packages:      
Sourcecode: virtualbox-ose version File versions

undi.c

/**************************************************************************
Etherboot -  BOOTP/TFTP Bootstrap Program
UNDI NIC driver for Etherboot

This file Copyright (C) 2003 Michael Brown <mbrown@fensystems.co.uk>
of Fen Systems Ltd. (http://www.fensystems.co.uk/).  All rights
reserved.

$Id: undi.c 1  vboxsync $
***************************************************************************/

/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2, or (at
 * your option) any later version.
 */

#ifdef PCBIOS

/* to get some global routines like printf */
#include "etherboot.h"
/* to get the interface to the body of the program */
#include "nic.h"
/* to get the PCI support functions, if this is a PCI NIC */
#include "pci.h"
/* UNDI and PXE defines.  Includes pxe.h. */
#include "undi.h"
/* 8259 PIC defines */
#include "pic8259.h"
/* Real-mode calls */
#include "realmode.h"
/* E820 map mangler */
#include "hidemem.h"

/* NIC specific static variables go here */
static undi_t undi = { 
      .pnp_bios         = NULL, 
      .rom              = NULL, 
      .undi_rom_id      = NULL, 
      .pxe              = NULL, 
      .pxs              = NULL, 
      .xmit_data        = NULL,
      .base_mem_data    = NULL, 
      .driver_code      = NULL, 
      .driver_code_size = 0, 
      .driver_data      = NULL, 
      .driver_data_size = 0, 
      .xmit_buffer      = NULL,
      .prestarted       = 0, 
      .started          = 0, 
      .initialized      = 0, 
      .opened           = 0,
      .pci            = { 0, 0, 0, NULL, 0, 0, 0, 0, 0, 0, 0, NULL },
      .irq              = IRQ_NONE 
};

/* Function prototypes */
static int allocate_base_mem_data ( void );
static int free_base_mem_data ( void );
static int eb_pxenv_undi_shutdown ( void );
static int eb_pxenv_stop_undi ( void );
static int undi_unload_base_code ( void );
static int undi_full_shutdown ( void );

/* Trivial/nontrivial IRQ handler selection */
#ifdef UNDI_NONTRIVIAL_IRQ
static void nontrivial_irq_handler ( void );
static void nontrivial_irq_handler_end ( void );
static int install_nontrivial_irq_handler ( irq_t irq );
static int remove_nontrivial_irq_handler ( irq_t irq );
static int nontrivial_irq_triggered ( irq_t irq );
static int copy_nontrivial_irq_handler ( void *target, size_t target_size );
#define NONTRIVIAL_IRQ_HANDLER_SIZE FRAGMENT_SIZE(nontrivial_irq_handler)
#define install_undi_irq_handler(irq) install_nontrivial_irq_handler(irq)
#define remove_undi_irq_handler(irq) remove_nontrivial_irq_handler(irq)
#define undi_irq_triggered(irq) nontrivial_irq_triggered(irq)
#define UNDI_IRQ_HANDLER_SIZE NONTRIVIAL_IRQ_HANDLER_SIZE
#define copy_undi_irq_handler(dest,size) copy_nontrivial_irq_handler(dest,size)
#else
#define install_undi_irq_handler(irq) install_trivial_irq_handler(irq)
#define remove_undi_irq_handler(irq) remove_trivial_irq_handler(irq)
#define undi_irq_triggered(irq) trivial_irq_triggered(irq)
#define UNDI_IRQ_HANDLER_SIZE TRIVIAL_IRQ_HANDLER_SIZE
#define copy_undi_irq_handler(dest,size) copy_trivial_irq_handler(dest,size)
#endif /* UNDI_NONTRIVIAL_IRQ */

/* Size of variable-length data in base_mem_data */
#define BASE_MEM_VARDATA_SIZE ( UNDI_IRQ_HANDLER_SIZE > e820mangler_size ? \
                        UNDI_IRQ_HANDLER_SIZE : e820mangler_size )

/**************************************************************************
 * Utility functions
 **************************************************************************/

/* Checksum a block.
 */

static uint8_t checksum ( void *block, size_t size ) {
      uint8_t sum = 0;
      uint16_t i = 0;
      for ( i = 0; i < size; i++ ) {
            sum += ( ( uint8_t * ) block )[i];
      }
      return sum;
}

/* Print the status of a !PXE structure
 */

static void pxe_dump ( void ) {
      printf ( "API %hx:%hx St %hx:%hx UD %hx:%hx UC %hx:%hx "
             "BD %hx:%hx BC %hx:%hx\n",
             undi.pxe->EntryPointSP.segment, undi.pxe->EntryPointSP.offset,
             undi.pxe->Stack.Seg_Addr, undi.pxe->Stack.Seg_Size,
             undi.pxe->UNDIData.Seg_Addr, undi.pxe->UNDIData.Seg_Size,
             undi.pxe->UNDICode.Seg_Addr, undi.pxe->UNDICode.Seg_Size,
             undi.pxe->BC_Data.Seg_Addr, undi.pxe->BC_Data.Seg_Size,
             undi.pxe->BC_Code.Seg_Addr, undi.pxe->BC_Code.Seg_Size );
}

/* Allocate/free space for structures that must reside in base memory
 */

static int allocate_base_mem_data ( void ) {
      /* Allocate space in base memory.
       * Initialise pointers to base memory structures.
       */
      if ( undi.base_mem_data == NULL ) {
            undi.base_mem_data =
                  allot_base_memory ( sizeof(undi_base_mem_data_t) +
                                  BASE_MEM_VARDATA_SIZE );
            if ( undi.base_mem_data == NULL ) {
                  printf ( "Failed to allocate base memory\n" );
                  free_base_mem_data();
                  return 0;
            }
            memset ( undi.base_mem_data, 0, sizeof(undi_base_mem_data_t) );
            undi.pxs = &undi.base_mem_data->pxs;
            undi.xmit_data = &undi.base_mem_data->xmit_data;
            undi.xmit_buffer = undi.base_mem_data->xmit_buffer;
      }
      return 1;
}

static int free_base_mem_data ( void ) {
      if ( undi.base_mem_data != NULL ) {
            forget_base_memory ( undi.base_mem_data,
                             sizeof(undi_base_mem_data_t) +
                             BASE_MEM_VARDATA_SIZE );
            undi.base_mem_data = NULL;
            undi.pxs = NULL;
            undi.xmit_data = NULL;
            undi.xmit_buffer = NULL;
            copy_undi_irq_handler ( NULL, 0 );
      }
      return 1;
}

static void assemble_firing_squad ( firing_squad_lineup_t *lineup,
                       void *start, size_t size,
                       firing_squad_shoot_t shoot ) {
      int target;
      int index;
      int bit;
      int start_kb = virt_to_phys(start) >> 10;
      int end_kb = ( virt_to_phys(start+size) + (1<<10) - 1 ) >> 10;
      
      for ( target = start_kb; target <= end_kb; target++ ) {
            index = FIRING_SQUAD_TARGET_INDEX ( target );
            bit = FIRING_SQUAD_TARGET_BIT ( target );
            lineup->targets[index] = ( shoot << bit ) |
                  ( lineup->targets[index] & ~( 1 << bit ) );
      }
}

static void shoot_targets ( firing_squad_lineup_t *lineup ) {
      int shoot_this_target = 0;
      int shoot_last_target = 0;
      int start_target = 0;
      int target;

      for ( target = 0; target <= 640; target++ ) {
            shoot_this_target = ( target == 640 ? 0 : 
                  ( 1 << FIRING_SQUAD_TARGET_BIT(target) ) &
                  lineup->targets[FIRING_SQUAD_TARGET_INDEX(target)] );
            if ( shoot_this_target && !shoot_last_target ) {
                  start_target = target;
            } else if ( shoot_last_target && !shoot_this_target ) {
                  size_t range_size = ( target - start_target ) << 10;
                  forget_base_memory ( phys_to_virt( start_target<<10 ),
                                   range_size );
            }
            shoot_last_target = shoot_this_target;
      }
}

/* Debug macros
 */

#ifdef TRACE_UNDI
#define DBG(...) printf ( __VA_ARGS__ )
#else
#define DBG(...)
#endif

#define UNDI_STATUS(pxs) ( (pxs)->Status == PXENV_EXIT_SUCCESS ? \
                        "SUCCESS" : \
                        ( (pxs)->Status == PXENV_EXIT_FAILURE ? \
                        "FAILURE" : "UNKNOWN" ) )

/**************************************************************************
 * Base memory scanning functions
 **************************************************************************/

/* Locate the $PnP structure indicating a PnP BIOS.
 */

static int hunt_pnp_bios ( void ) {
      uint32_t off = 0x10000;

      printf ( "Hunting for PnP BIOS..." );
      while ( off > 0 ) {
            off -= 16;
            undi.pnp_bios = (pnp_bios_t *) phys_to_virt ( 0xf0000 + off );
            if ( undi.pnp_bios->signature == PNP_BIOS_SIGNATURE ) {
                  printf ( "found $PnP at f000:%hx...", off );
                  if ( checksum(undi.pnp_bios,sizeof(pnp_bios_t)) !=0) {
                        printf ( "invalid checksum\n..." );
                        continue;
                  }
                  printf ( "ok\n" );
                  return 1;
            }
      }
      printf ( "none found\n" );
      undi.pnp_bios = NULL;
      return 0;
}

/* Locate the !PXE structure indicating a loaded UNDI driver.
 */

static int hunt_pixie ( void ) {
      static uint32_t ptr = 0;
      pxe_t *pxe = NULL;

      printf ( "Hunting for pixies..." );
      if ( ptr == 0 ) ptr = 0xa0000;
      while ( ptr > 0x10000 ) {
            ptr -= 16;
            pxe = (pxe_t *) phys_to_virt ( ptr );
            if ( memcmp ( pxe->Signature, "!PXE", 4 ) == 0 ) {
                  printf ( "found !PXE at %x...", ptr );
                  if ( checksum ( pxe, sizeof(pxe_t) ) != 0 ) {
                        printf ( "invalid checksum\n..." );
                        continue;
                  }
                  if ( ptr < get_free_base_memory() ) {
                        printf ( "in free base memory!\n\n"
                               "WARNING: a valid !PXE structure was "
                               "found in an area of memory marked "
                               "as free!\n\n" );
                        undi.pxe = pxe;
                        pxe_dump();
                        undi.pxe = NULL;
                        printf ( "\nIgnoring and continuing, but this "
                               "may cause problems later!\n\n" );
                        continue;
                  }
                  printf ( "ok\n" );
                  undi.pxe = pxe;
                  pxe_dump();
                  printf ( "Resetting pixie...\n" );
                  undi_unload_base_code();
                  eb_pxenv_stop_undi();
                  pxe_dump();
                  return 1;
            }
      }
      printf ( "none found\n" );
      ptr = 0;
      return 0;
}

/* Locate PCI PnP ROMs.
 */

static int hunt_rom ( void ) {
      static uint32_t ptr = 0;

      /* If we are not a PCI device, we cannot search for a ROM that
       * matches us (?)
       */
      if ( ! undi.pci.vendor )
            return 0;

      printf ( "Hunting for ROMs..." );
      if ( ptr == 0 ) ptr = 0x100000;
      while ( ptr > 0x0c0000 ) {
            ptr -= 0x800;
            undi.rom = ( rom_t * ) phys_to_virt ( ptr );
            if ( undi.rom->signature == ROM_SIGNATURE ) {
                  pcir_header_t *pcir_header = NULL;
                  pnp_header_t *pnp_header = NULL;

                  printf ( "found 55AA at %x...", ptr );
                  if ( undi.rom->pcir_off == 0 ) {
                        printf ( "not a PCI ROM\n..." );
                        continue;
                  }
                  pcir_header = (pcir_header_t*)( ( void * ) undi.rom +
                                          undi.rom->pcir_off );
                  if ( pcir_header->signature != PCIR_SIGNATURE ) {
                        printf ( "invalid PCI signature\n..." );
                        continue;
                  }
                  printf ( "PCI:%hx:%hx...", pcir_header->vendor_id,
                         pcir_header->device_id );
                  if ( ( pcir_header->vendor_id != undi.pci.vendor ) ||
                       ( pcir_header->device_id != undi.pci.dev_id ) ) {
                        printf ( "not me (%hx:%hx)\n...",
                               undi.pci.vendor,
                               undi.pci.dev_id );
                        continue;
                  }
                  if ( undi.rom->pnp_off == 0 ) {
                        printf ( "not a PnP ROM\n..." );
                        continue;
                  }
                  pnp_header = (pnp_header_t*)( ( void * ) undi.rom +
                                           undi.rom->pnp_off );
                  if ( pnp_header->signature != PNP_SIGNATURE ) {
                        printf ( "invalid $PnP signature\n..." );
                        continue;
                  }
                  if ( checksum(pnp_header,sizeof(pnp_header_t)) != 0 ) {
                        printf ( "invalid PnP checksum\n..." );
                        continue;
                  }
                  printf ( "ok\nROM contains %s by %s\n",
                         pnp_header->product_str_off==0 ? "(unknown)" :
                         (void*)undi.rom+pnp_header->product_str_off,
                         pnp_header->manuf_str_off==0 ? "(unknown)" :
                         (void*)undi.rom+pnp_header->manuf_str_off );
                  return 1;
            }
      }
      printf ( "none found\n" );
      ptr = 0;
      undi.rom = NULL;
      return 0;
}

/* Locate ROMs containing UNDI drivers.
 */

static int hunt_undi_rom ( void ) {
      while ( hunt_rom() ) {
            if ( undi.rom->undi_rom_id_off == 0 ) {
                  printf ( "Not a PXE ROM\n" );
                  continue;
            }
            undi.undi_rom_id = (undi_rom_id_t *)
                  ( (void *)undi.rom + undi.rom->undi_rom_id_off );
            if ( undi.undi_rom_id->signature != UNDI_SIGNATURE ) {
                  printf ( "Invalid UNDI signature\n" );
                  continue;
            }
            if ( checksum ( undi.undi_rom_id,
                        undi.undi_rom_id->struct_length ) != 0 ) {
                  printf ( "Invalid checksum\n" );
                  continue;
            }
            printf ( "Located UNDI ROM supporting revision %d.%d.%d\n",
                   undi.undi_rom_id->undi_rev[2],
                   undi.undi_rom_id->undi_rev[1],
                   undi.undi_rom_id->undi_rev[0] );
            return 1;
      }
      return 0;
}

/**************************************************************************
 * Low-level UNDI API call wrappers
 **************************************************************************/

/* Make a real-mode UNDI API call to the UNDI routine at
 * routine_seg:routine_off, passing in three uint16 parameters on the
 * real-mode stack.
 */

static PXENV_EXIT_t _undi_call ( uint16_t routine_seg,
                    uint16_t routine_off, uint16_t st0,
                    uint16_t st1, uint16_t st2 ) {
      PXENV_EXIT_t ret = PXENV_EXIT_FAILURE;
      struct {
            segoff_t routine;
            uint16_t st0;
            uint16_t st1;
            uint16_t st2;
      } PACKED in_stack = {
            { routine_off, routine_seg }, st0, st1, st2
      };

      RM_FRAGMENT(rm_undi_call, 
            "popw %di\n\t"                /* %es:di = routine */
            "popw %es\n\t"
            "pushw %cs\n\t"               /* set up return address */
            "call 1f\n\t1:popw %bx\n\t"
            "leaw (2f-1b)(%bx), %ax\n\t"
            "pushw %ax\n\t"
            "pushw %es\n\t"               /* routine address to stack */
            "pushw %di\n\t"
            "lret\n\t"              /* calculated lcall */
            "\n2:\n\t"              /* continuation point */
      );

      /* Parameters are left on stack: set out_stack = in_stack */
      ret = real_call ( rm_undi_call, &in_stack, &in_stack );

      /* UNDI API calls may rudely change the status of A20 and not
       * bother to restore it afterwards.  Intel is known to be
       * guilty of this.
       *
       * Note that we will return to this point even if A20 gets
       * screwed up by the UNDI driver, because Etherboot always
       * resides in an even megabyte of RAM.
       */
      gateA20_set();

      return ret;
}

/* Make a real-mode call to the UNDI loader routine at
 * routine_seg:routine_off, passing in the seg:off address of a
 * pxenv_structure on the real-mode stack.
 */

static int undi_call_loader ( void ) {
      PXENV_EXIT_t pxenv_exit = PXENV_EXIT_FAILURE;
      
      /* Hide Etherboot around the loader, so that the PXE stack
       * doesn't trash our memory areas
       */
      install_e820mangler ( undi.base_mem_data->e820mangler );
      hide_etherboot();
      pxenv_exit = _undi_call ( SEGMENT( undi.rom ),
                          undi.undi_rom_id->undi_loader_off,
                          OFFSET( undi.pxs ),
                          SEGMENT( undi.pxs ),
                          0 /* Unused for UNDI loader API */ );
      if ( !unhide_etherboot() ) {
            printf ( "FATAL: corrupt INT15\n" );
            return 0;
      }

      /* Return 1 for success, to be consistent with other routines */
      if ( pxenv_exit == PXENV_EXIT_SUCCESS ) return 1;
      printf ( "UNDI loader call failed with status %#hx\n",
             undi.pxs->Status );
      return 0;
}

/* Make a real-mode UNDI API call, passing in the opcode and the
 * seg:off address of a pxenv_structure on the real-mode stack.
 *
 * Two versions: undi_call() will automatically report any failure
 * codes, undi_call_silent() will not.
 */

static int undi_call_silent ( uint16_t opcode ) {
      PXENV_EXIT_t pxenv_exit = PXENV_EXIT_FAILURE;

      pxenv_exit = _undi_call ( undi.pxe->EntryPointSP.segment,
                          undi.pxe->EntryPointSP.offset,
                          opcode,
                          OFFSET( undi.pxs ),
                          SEGMENT( undi.pxs ) );
      /* Return 1 for success, to be consistent with other routines */
      return pxenv_exit == PXENV_EXIT_SUCCESS ? 1 : 0;
}

static int undi_call ( uint16_t opcode ) {
      if ( undi_call_silent ( opcode ) ) return 1;
      printf ( "UNDI API call %#hx failed with status %#hx\n",
             opcode, undi.pxs->Status );
      return 0;
}

#ifdef UNDI_NONTRIVIAL_IRQ
/* IRQ handler that actually calls PXENV_UNDI_ISR.  It's probably
 * better to use the trivial IRQ handler, since this seems to work for
 * just about all known NICs and doesn't involve making a PXE API call
 * in interrupt context.
 *
 * This routine is mainly used for testing the Etherboot PXE stack's
 * ability to be called in interrupt context.  It is not compiled in
 * by default.
 *
 * This code has fewer safety checks than those in the
 * trivial_irq_handler routines.  These are omitted because this code
 * is not intended for mainstream use.
 */

uint16_t nontrivial_irq_previous_trigger_count = 0;

static int copy_nontrivial_irq_handler ( void *target,
                               size_t target_size __unused ) {
      RM_FRAGMENT(nontrivial_irq_handler,
      /* Will be installed on a paragraph boundary, so access variables
       * using %cs:(xxx-irqstart)
       */
            "\n\t"
            "irqstart:\n\t"
      /* Fields here must match those in undi_irq_handler_t */
            "chain_to:\t.word 0,0\n\t"
            "irq_chain:\t.byte 0,0,0,0\n\t"
            "entry:\t.word 0,0\n\t"
            "count_all:\t.word 0\n\t"
            "count_ours:\t.word 0\n\t"
            "undi_isr:\n\t"
            "undi_isr_Status:\t.word 0\n\t"
            "undi_isr_FuncFlag:\t.word 0\n\t"
            "undi_isr_others:\t.word 0,0,0,0,0,0\n\t"
            "handler:\n\t"
      /* Assume that PXE stack will corrupt everything */
            "pushal\n\t"
            "push %ds\n\t"
            "push %es\n\t"
            "push %fs\n\t"
            "push %gs\n\t"
      /* Set DS == CS */      
            "pushw %cs\n\t"
            "popw %ds\n\t"
      /* Set up parameters for call */
#ifdef VBOX
            "movw $" STRINGFY(PXENV_UNDI_ISR_IN_START) ", %ds:(undi_isr_FuncFlag-irqstart)\n\t"
#else /* !VBOX */
            "movw $" RM_STR(PXENV_UNDI_ISR_IN_START) ", %ds:(undi_isr_FuncFlag-irqstart)\n\t"
#endif /* !VBOX */
            "pushw %cs\n\t"
            "popw %es\n\t"
            "movw $(undi_isr-irqstart), %di\n\t"
#ifdef VBOX
            "movw $" STRINGFY(PXENV_UNDI_ISR) ", %bx\n\t"
#else /* !VBOX */
            "movw $" RM_STR(PXENV_UNDI_ISR) ", %bx\n\t"
#endif /* !VBOX */
            "pushw %es\n\t"    /* Registers for PXENV+, stack for !PXE */
            "pushw %di\n\t"
            "pushw %bx\n\t"
      /* Make PXE API call */
            "lcall *%ds:(entry-irqstart)\n\t"
            "addw $6, %sp\n\t"
      /* Set DS == CS */      
            "pushw %cs\n\t"
            "popw %ds\n\t"
      /* Check return status to see if it's one of our interrupts */
#ifdef VBOX
            "cmpw $" STRINGFY(PXENV_STATUS_SUCCESS) ", %cs:(undi_isr_Status-irqstart)\n\t"
#else /* !VBOX */
            "cmpw $" RM_STR(PXENV_STATUS_SUCCESS) ", %cs:(undi_isr_Status-irqstart)\n\t"
#endif /* !VBOX */
            "jne 1f\n\t"
#ifdef VBOX
            "cmpw $" STRINGFY(PXENV_UNDI_ISR_OUT_OURS) ", %cs:(undi_isr_FuncFlag-irqstart)\n\t"
#else /* !VBOX */
            "cmpw $" RM_STR(PXENV_UNDI_ISR_OUT_OURS) ", %cs:(undi_isr_FuncFlag-irqstart)\n\t"
#endif /* !VBOX */
            "jne 1f\n\t"
      /* Increment count_ours if so */
            "incw %ds:(count_ours-irqstart)\n\t"
            "1:\n\t"
      /* Increment count_all anyway */
            "incw %ds:(count_all-irqstart)\n\t"
      /* Restore registers and return */
            "popw %gs\n\t"
            "popw %fs\n\t"
            "popw %es\n\t"
            "popw %ds\n\t"
            "popal\n\t"
            "\n\t"
      /* Chain to acknowledge the interrupt */
            "cmpb $0, %cs:(irq_chain-irqstart)\n\t"
            "jz 2f\n\t"
            "ljmp %cs:(chain_to-irqstart)\n\t"
            "2:\n\t"
            "\n\t"
            "iret\n\t"
            "\n\t"
      );

      /* Copy handler */
      memcpy ( target, nontrivial_irq_handler, NONTRIVIAL_IRQ_HANDLER_SIZE );

      return 1;
}

static int install_nontrivial_irq_handler ( irq_t irq ) {
      undi_irq_handler_t *handler = 
            &undi.base_mem_data->nontrivial_irq_handler;
      segoff_t isr_segoff;

      printf ( "WARNING: using non-trivial IRQ handler [EXPERIMENTAL]\n" );
      /*
       * This code is deliberately quick and dirty.  The whole
       * nontrivial IRQ stuff is only present in order to test out
       * calling our PXE stack in interrupt context.  Do NOT use
       * this in production code.
       */

      disable_irq ( irq );
      handler->count_all = 0;
      handler->count_ours = 0;
      handler->entry = undi.pxe->EntryPointSP;
      nontrivial_irq_previous_trigger_count = 0;
      isr_segoff.segment = SEGMENT(handler);
      isr_segoff.offset = (void*)&handler->code - (void*)handler;
      install_irq_handler( irq, &isr_segoff, 
            &handler->irq_chain, &handler->chain_to);
      enable_irq ( irq );

      return 1;
}

static int remove_nontrivial_irq_handler ( irq_t irq ) {
      undi_irq_handler_t *handler = 
            &undi.base_mem_data->nontrivial_irq_handler;
      segoff_t isr_segoff;

      isr_segoff.segment = SEGMENT(handler);
      isr_segoff.offset = (char*)&handler->code - (char*)handler;
      remove_irq_handler( irq, &isr_segoff, 
            &handler->irq_chain, &handler->chain_to);
      return 1;
}

static int nontrivial_irq_triggered ( irq_t irq __unused ) {
      undi_irq_handler_t *handler = 
            &undi.base_mem_data->nontrivial_irq_handler;
      uint16_t nontrivial_irq_this_trigger_count = handler->count_ours;
      int triggered = ( nontrivial_irq_this_trigger_count -
                    nontrivial_irq_previous_trigger_count );

      nontrivial_irq_previous_trigger_count =
            nontrivial_irq_this_trigger_count;
      return triggered ? 1 : 0;
}

static void nontrivial_irq_debug ( irq_t irq ) {
      undi_irq_handler_t *handler = 
            &undi.base_mem_data->nontrivial_irq_handler;

      printf ( "IRQ %d triggered %d times (%d of which were ours)\n",
             irq, handler->count_all, handler->count_ours );
}
#endif /* UNDI_NONTRIVIAL_IRQ */
      
/**************************************************************************
 * High-level UNDI API call wrappers
 **************************************************************************/

/* Install the UNDI driver from a located UNDI ROM.
 */

static int undi_loader ( void ) {
      pxe_t *pxe = NULL;

      if ( ! undi.pci.vendor ) {
            printf ( "ERROR: attempted to call loader of an ISA ROM?\n" );
            return 0;
      }

      /* AX contains PCI bus:devfn (PCI specification) */
      undi.pxs->loader.ax = ( undi.pci.bus << 8 ) | undi.pci.devfn;
      /* BX and DX set to 0xffff for non-ISAPnP devices
       * (BIOS boot specification)
       */
      undi.pxs->loader.bx = 0xffff;
      undi.pxs->loader.dx = 0xffff;
      /* ES:DI points to PnP BIOS' $PnP structure
       * (BIOS boot specification)
       */
      if ( undi.pnp_bios ) {
            undi.pxs->loader.es = 0xf000;
            undi.pxs->loader.di = virt_to_phys ( undi.pnp_bios ) - 0xf0000;
      } else {
            /* Set to a NULL pointer and hope that we don't need it */
            undi.pxs->loader.es = 0x0000;
            undi.pxs->loader.di = 0x0000;
      }

      /* Allocate space for UNDI driver's code and data segments */
      undi.driver_code_size = undi.undi_rom_id->code_size;
      undi.driver_code = allot_base_memory ( undi.driver_code_size );
      if ( undi.driver_code == NULL ) {
            printf ( "Could not allocate %d bytes for UNDI code segment\n",
                   undi.driver_code_size );
            return 0;
      }
      undi.pxs->loader.undi_cs = SEGMENT( undi.driver_code );

      undi.driver_data_size = undi.undi_rom_id->data_size;
      undi.driver_data = allot_base_memory ( undi.driver_data_size );
      if ( undi.driver_data == NULL ) {
            printf ( "Could not allocate %d bytes for UNDI code segment\n",
                   undi.driver_data_size );
            return 0;
      }
      undi.pxs->loader.undi_ds = SEGMENT( undi.driver_data );

      printf ( "Installing UNDI driver code to %hx:0000, data at %hx:0000\n",
            undi.pxs->loader.undi_cs, undi.pxs->loader.undi_ds );

      /* Do the API call to install the loader */
      if ( ! undi_call_loader () ) return 0;

      pxe = VIRTUAL( undi.pxs->loader.undi_cs,
                   undi.pxs->loader.pxe_ptr.offset );
      printf ( "UNDI driver created a pixie at %hx:%hx...",
             undi.pxs->loader.undi_cs, undi.pxs->loader.pxe_ptr.offset );
      if ( memcmp ( pxe->Signature, "!PXE", 4 ) != 0 ) {
            printf ( "invalid signature\n" );
            return 0;
      }
      if ( checksum ( pxe, sizeof(pxe_t) ) != 0 ) {
            printf ( "invalid checksum\n" );
            return 0;
      }
      printf ( "ok\n" );
      undi.pxe = pxe;
      pxe_dump();
      return 1;
}

/* Start the UNDI driver.
 */

static int eb_pxenv_start_undi ( void ) {
      int success = 0;

      /* AX contains PCI bus:devfn (PCI specification) */
      undi.pxs->start_undi.ax = ( undi.pci.bus << 8 ) | undi.pci.devfn;

      /* BX and DX set to 0xffff for non-ISAPnP devices
       * (BIOS boot specification)
       */
      undi.pxs->start_undi.bx = 0xffff;
      undi.pxs->start_undi.dx = 0xffff;
      /* ES:DI points to PnP BIOS' $PnP structure
       * (BIOS boot specification)
       */
      if ( undi.pnp_bios ) {
            undi.pxs->start_undi.es = 0xf000;
            undi.pxs->start_undi.di =
                  virt_to_phys ( undi.pnp_bios ) - 0xf0000;
      } else {
            /* Set to a NULL pointer and hope that we don't need it */
            undi.pxs->start_undi.es = 0x0000;
            undi.pxs->start_undi.di = 0x0000;
      }

      DBG ( "PXENV_START_UNDI => AX=%hx BX=%hx DX=%hx ES:DI=%hx:%hx\n",
            undi.pxs->start_undi.ax,
            undi.pxs->start_undi.bx, undi.pxs->start_undi.dx,
            undi.pxs->start_undi.es, undi.pxs->start_undi.di );
      success = undi_call ( PXENV_START_UNDI );
      DBG ( "PXENV_START_UNDI <= Status=%s\n", UNDI_STATUS(undi.pxs) );
      if ( success ) undi.prestarted = 1;
      return success;
}

static int eb_pxenv_undi_startup ( void ) {
      int success = 0;

      DBG ( "PXENV_UNDI_STARTUP => (void)\n" );
      success = undi_call ( PXENV_UNDI_STARTUP );
      DBG ( "PXENV_UNDI_STARTUP <= Status=%s\n", UNDI_STATUS(undi.pxs) );
      if ( success ) undi.started = 1;
      return success;
}

static int eb_pxenv_undi_cleanup ( void ) {
      int success = 0;

      DBG ( "PXENV_UNDI_CLEANUP => (void)\n" );
      success = undi_call ( PXENV_UNDI_CLEANUP );
      DBG ( "PXENV_UNDI_CLEANUP <= Status=%s\n", UNDI_STATUS(undi.pxs) );
      return success;
}

static int eb_pxenv_undi_initialize ( void ) {
      int success = 0;

      undi.pxs->undi_initialize.ProtocolIni = 0;
      memset ( &undi.pxs->undi_initialize.reserved, 0,
             sizeof ( undi.pxs->undi_initialize.reserved ) );
      DBG ( "PXENV_UNDI_INITIALIZE => ProtocolIni=%x\n" );
      success = undi_call ( PXENV_UNDI_INITIALIZE );
      DBG ( "PXENV_UNDI_INITIALIZE <= Status=%s\n", UNDI_STATUS(undi.pxs) );
      if ( success ) undi.initialized = 1;
      return success;
}

static int eb_pxenv_undi_shutdown ( void ) {
      int success = 0;

      DBG ( "PXENV_UNDI_SHUTDOWN => (void)\n" );
      success = undi_call ( PXENV_UNDI_SHUTDOWN );
      DBG ( "PXENV_UNDI_SHUTDOWN <= Status=%s\n", UNDI_STATUS(undi.pxs) );
      if ( success ) {
            undi.initialized = 0;
            undi.started = 0;
      }
      return success;
}

static int eb_pxenv_undi_open ( void ) {
      int success = 0;

      undi.pxs->undi_open.OpenFlag = 0;
      undi.pxs->undi_open.PktFilter = FLTR_DIRECTED | FLTR_BRDCST;
      
      /* Multicast support not yet implemented */
      undi.pxs->undi_open.R_Mcast_Buf.MCastAddrCount = 0;
      DBG ( "PXENV_UNDI_OPEN => OpenFlag=%hx PktFilter=%hx "
            "MCastAddrCount=%hx\n",
            undi.pxs->undi_open.OpenFlag, undi.pxs->undi_open.PktFilter,
            undi.pxs->undi_open.R_Mcast_Buf.MCastAddrCount );
      success = undi_call ( PXENV_UNDI_OPEN );
      DBG ( "PXENV_UNDI_OPEN <= Status=%s\n", UNDI_STATUS(undi.pxs) );
      if ( success ) undi.opened = 1;
      return success;   
}

static int eb_pxenv_undi_close ( void ) {
      int success = 0;

      DBG ( "PXENV_UNDI_CLOSE => (void)\n" );
      success = undi_call ( PXENV_UNDI_CLOSE );
      DBG ( "PXENV_UNDI_CLOSE <= Status=%s\n", UNDI_STATUS(undi.pxs) );
      if ( success ) undi.opened = 0;
      return success;
}

static int eb_pxenv_undi_transmit_packet ( void ) {
      int success = 0;
      static const uint8_t broadcast[] = { 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF };

      /* XMitFlag selects unicast / broadcast */
      if ( memcmp ( undi.xmit_data->destaddr, broadcast,
                  sizeof(broadcast) ) == 0 ) {
            undi.pxs->undi_transmit.XmitFlag = XMT_BROADCAST;
      } else {
            undi.pxs->undi_transmit.XmitFlag = XMT_DESTADDR;
      }

      /* Zero reserved dwords */
      undi.pxs->undi_transmit.Reserved[0] = 0;
      undi.pxs->undi_transmit.Reserved[1] = 0;

      /* Segment:offset pointer to DestAddr in base memory */
      undi.pxs->undi_transmit.DestAddr.segment =
            SEGMENT( undi.xmit_data->destaddr );
      undi.pxs->undi_transmit.DestAddr.offset =
            OFFSET( undi.xmit_data->destaddr );

      /* Segment:offset pointer to TBD in base memory */
      undi.pxs->undi_transmit.TBD.segment = SEGMENT( &undi.xmit_data->tbd );
      undi.pxs->undi_transmit.TBD.offset = OFFSET( &undi.xmit_data->tbd );

      /* Use only the "immediate" part of the TBD */
      undi.xmit_data->tbd.DataBlkCount = 0;
      
      DBG ( "PXENV_UNDI_TRANSMIT_PACKET => Protocol=%hx XmitFlag=%hx ...\n"
            "... DestAddr=%hx:%hx TBD=%hx:%hx ...\n",
            undi.pxs->undi_transmit.Protocol,
            undi.pxs->undi_transmit.XmitFlag,
            undi.pxs->undi_transmit.DestAddr.segment,
            undi.pxs->undi_transmit.DestAddr.offset,
            undi.pxs->undi_transmit.TBD.segment,
            undi.pxs->undi_transmit.TBD.offset );
      DBG ( "... TBD { ImmedLength=%hx Xmit=%hx:%hx DataBlkCount=%hx }\n",
            undi.xmit_data->tbd.ImmedLength,
            undi.xmit_data->tbd.Xmit.segment,
            undi.xmit_data->tbd.Xmit.offset,
            undi.xmit_data->tbd.DataBlkCount );
      success = undi_call ( PXENV_UNDI_TRANSMIT );
      DBG ( "PXENV_UNDI_TRANSMIT_PACKET <= Status=%s\n",
            UNDI_STATUS(undi.pxs) );
      return success;
}

static int eb_pxenv_undi_set_station_address ( void ) {
      /* This will spuriously fail on some cards.  Ignore failures.
       * We only ever use it to set the MAC address to the card's
       * permanent value anyway, so it's a useless call (although we
       * make it because PXE spec says we should).
       */
      DBG ( "PXENV_UNDI_SET_STATION_ADDRESS => "
            "StationAddress=%!\n",
            undi.pxs->undi_set_station_address.StationAddress );
      undi_call_silent ( PXENV_UNDI_SET_STATION_ADDRESS );
      DBG ( "PXENV_UNDI_SET_STATION_ADDRESS <= Status=%s\n",
            UNDI_STATUS(undi.pxs) );
      return 1;
}

static int eb_pxenv_undi_get_information ( void ) {
      int success = 0;
      memset ( undi.pxs, 0, sizeof ( undi.pxs ) );
      DBG ( "PXENV_UNDI_GET_INFORMATION => (void)\n" );
      success = undi_call ( PXENV_UNDI_GET_INFORMATION );
      DBG ( "PXENV_UNDI_GET_INFORMATION <= Status=%s "
            "BaseIO=%hx IntNumber=%hx ...\n"
            "... MaxTranUnit=%hx HwType=%hx HwAddrlen=%hx ...\n"
            "... CurrentNodeAddress=%! PermNodeAddress=%! ...\n"
            "... ROMAddress=%hx RxBufCt=%hx TxBufCt=%hx\n",
            UNDI_STATUS(undi.pxs),
            undi.pxs->undi_get_information.BaseIo,
            undi.pxs->undi_get_information.IntNumber,
            undi.pxs->undi_get_information.MaxTranUnit,
            undi.pxs->undi_get_information.HwType,
            undi.pxs->undi_get_information.HwAddrLen,
            undi.pxs->undi_get_information.CurrentNodeAddress,
            undi.pxs->undi_get_information.PermNodeAddress,
            undi.pxs->undi_get_information.ROMAddress,
            undi.pxs->undi_get_information.RxBufCt,
            undi.pxs->undi_get_information.TxBufCt );
      return success;
}

static int eb_pxenv_undi_get_iface_info ( void ) {
      int success = 0;

      DBG ( "PXENV_UNDI_GET_IFACE_INFO => (void)\n" );
      success = undi_call ( PXENV_UNDI_GET_IFACE_INFO );
      DBG ( "PXENV_UNDI_GET_IFACE_INFO <= Status=%s IfaceType=%s ...\n"
            "... LinkSpeed=%x ServiceFlags=%x\n",
            UNDI_STATUS(undi.pxs),
            undi.pxs->undi_get_iface_info.IfaceType,
            undi.pxs->undi_get_iface_info.LinkSpeed,
            undi.pxs->undi_get_iface_info.ServiceFlags );
      return success;
}

static int eb_pxenv_undi_isr ( void ) {
      int success = 0;

      DBG ( "PXENV_UNDI_ISR => FuncFlag=%hx\n",
            undi.pxs->undi_isr.FuncFlag );      
      success = undi_call ( PXENV_UNDI_ISR );
      DBG ( "PXENV_UNDI_ISR <= Status=%s FuncFlag=%hx BufferLength=%hx ...\n"
            "... FrameLength=%hx FrameHeaderLength=%hx Frame=%hx:%hx "
            "ProtType=%hhx ...\n... PktType=%hhx\n",
            UNDI_STATUS(undi.pxs), undi.pxs->undi_isr.FuncFlag,
            undi.pxs->undi_isr.BufferLength,
            undi.pxs->undi_isr.FrameLength,
            undi.pxs->undi_isr.FrameHeaderLength,
            undi.pxs->undi_isr.Frame.segment,
            undi.pxs->undi_isr.Frame.offset,
            undi.pxs->undi_isr.ProtType,
            undi.pxs->undi_isr.PktType );
      return success;
}

static int eb_pxenv_stop_undi ( void ) {
      int success = 0;

      DBG ( "PXENV_STOP_UNDI => (void)\n" );
      success = undi_call ( PXENV_STOP_UNDI );
      DBG ( "PXENV_STOP_UNDI <= Status=%s\n", UNDI_STATUS(undi.pxs) );
      if ( success ) undi.prestarted = 0;
      return success;
}

static int eb_pxenv_unload_stack ( void ) {
      int success = 0;

      memset ( undi.pxs, 0, sizeof ( undi.pxs ) );
      DBG ( "PXENV_UNLOAD_STACK => (void)\n" );
      success = undi_call_silent ( PXENV_UNLOAD_STACK );
      DBG ( "PXENV_UNLOAD_STACK <= Status=%s ...\n... (%s)\n",
            UNDI_STATUS(undi.pxs),
            ( undi.pxs->Status == PXENV_STATUS_SUCCESS ?
            "base-code is ready to be removed" :
            ( undi.pxs->Status == PXENV_STATUS_FAILURE ?
              "the size of free base memory has been changed" :
              ( undi.pxs->Status == PXENV_STATUS_KEEP_ALL ?
                "the NIC interrupt vector has been changed" :
                "UNEXPECTED STATUS CODE" ) ) ) );
      return success;
}

static int eb_pxenv_stop_base ( void ) {
      int success = 0;

      DBG ( "PXENV_STOP_BASE => (void)\n" );
      success = undi_call ( PXENV_STOP_BASE );
      DBG ( "PXENV_STOP_BASE <= Status=%s\n", UNDI_STATUS(undi.pxs) );
      return success;
}

/* Unload UNDI base code (if any present) and free memory.
 */
static int undi_unload_base_code ( void ) {
      void *bc_code = VIRTUAL( undi.pxe->BC_Code.Seg_Addr, 0 );
      size_t bc_code_size = undi.pxe->BC_Code.Seg_Size;
      void *bc_data = VIRTUAL( undi.pxe->BC_Data.Seg_Addr, 0 );
      size_t bc_data_size = undi.pxe->BC_Data.Seg_Size;
      void *bc_stck = VIRTUAL( undi.pxe->Stack.Seg_Addr, 0 );
      size_t bc_stck_size = undi.pxe->Stack.Seg_Size;
      firing_squad_lineup_t lineup;

      /* Since we never start the base code, the only time we should
       * reach this is if we were loaded via PXE.  There are many
       * different and conflicting versions of the "correct" way to
       * unload the PXE base code, several of which appear within
       * the PXE specification itself.  This one seems to work for
       * our purposes.
       *
       * We always call PXENV_STOP_BASE and PXENV_UNLOAD_STACK even
       * if the !PXE structure indicates that no base code is
       * present.  We do this for the case that there is a
       * base-code-less UNDI driver loaded that has hooked some
       * interrupts.  If the base code really is absent, then these
       * calls will fail, we will ignore the failure, and our
       * subsequent memory-freeing code is robust enough to handle
       * whatever's thrown at it.
       */
      eb_pxenv_stop_base();
      eb_pxenv_unload_stack();
      if ( ( undi.pxs->unload_stack.Status != PXENV_STATUS_SUCCESS ) &&
           ( undi.pxs->unload_stack.Status != PXENV_STATUS_FAILURE ) &&
           ( undi.pxe->BC_Code.Seg_Addr != 0 ) )
      {
            printf ( "Could not free memory allocated to PXE base code: "
                   "possible memory leak\n" );
            return 0;
      }
      /* Free data structures.  Forget what the PXE specification
       * says about how to calculate the new size of base memory;
       * basemem.c takes care of all that for us.  Note that we also
       * have to free the stack (even though PXE spec doesn't say
       * anything about it) because nothing else is going to do so.
       *
       * Structures will almost certainly not be kB-aligned and
       * there's a reasonable chance that the UNDI code or data
       * portions will lie in the same kB as the base code.  Since
       * forget_base_memory works only in 1kB increments, this means
       * we have to do some arcane trickery.
       */
      memset ( &lineup, 0, sizeof(lineup) );
      if ( SEGMENT(bc_code) != 0 )
            assemble_firing_squad( &lineup, bc_code, bc_code_size, SHOOT );
      if ( SEGMENT(bc_data) != 0 )
            assemble_firing_squad( &lineup, bc_data, bc_data_size, SHOOT );
      if ( SEGMENT(bc_stck) != 0 )
            assemble_firing_squad( &lineup, bc_stck, bc_stck_size, SHOOT );
      /* Don't shoot any bits of the UNDI driver code or data */
      assemble_firing_squad ( &lineup,
                        VIRTUAL(undi.pxe->UNDICode.Seg_Addr, 0),
                        undi.pxe->UNDICode.Seg_Size, DONTSHOOT );
      assemble_firing_squad ( &lineup,
                        VIRTUAL(undi.pxe->UNDIData.Seg_Addr, 0),
                        undi.pxe->UNDIData.Seg_Size, DONTSHOOT );
      shoot_targets ( &lineup );
      undi.pxe->BC_Code.Seg_Addr = 0;
      undi.pxe->BC_Data.Seg_Addr = 0;
      undi.pxe->Stack.Seg_Addr = 0;

      /* Free and reallocate our own base memory data structures, to
       * allow the freed base-code blocks to be fully released.
       */
      free_base_mem_data();
      if ( ! allocate_base_mem_data() ) {
            printf ( "FATAL: memory unaccountably lost\n" );
            while ( 1 ) {};
      }

      return 1;
}

/* UNDI full initialization
 *
 * This calls all the various UNDI initialization routines in sequence.
 */

static int undi_full_startup ( void ) {
      if ( ! eb_pxenv_start_undi() ) return 0;
      if ( ! eb_pxenv_undi_startup() ) return 0;
      if ( ! eb_pxenv_undi_initialize() ) return 0;
      if ( ! eb_pxenv_undi_get_information() ) return 0;
      undi.irq = undi.pxs->undi_get_information.IntNumber;
      copy_undi_irq_handler ( undi.base_mem_data->irq_handler,
                        UNDI_IRQ_HANDLER_SIZE );
      if ( ! install_undi_irq_handler ( undi.irq ) ) {
            undi.irq = IRQ_NONE;
            return 0;
      }
      memmove ( &undi.pxs->undi_set_station_address.StationAddress,
              &undi.pxs->undi_get_information.PermNodeAddress,
              sizeof (undi.pxs->undi_set_station_address.StationAddress) );
      if ( ! eb_pxenv_undi_set_station_address() ) return 0;
      if ( ! eb_pxenv_undi_open() ) return 0;
      return 1;
}

/* UNDI full shutdown
 *
 * This calls all the various UNDI shutdown routines in sequence and
 * also frees any memory that it can.
 */

static int undi_full_shutdown ( void ) {
      if ( undi.pxe != NULL ) {
            /* In case we didn't allocate the driver's memory in the first
             * place, try to grab the code and data segments and sizes
             * from the !PXE structure.
             */
            if ( undi.driver_code == NULL ) {
                  undi.driver_code = VIRTUAL(undi.pxe->UNDICode.Seg_Addr,
                                       0 );
                  undi.driver_code_size = undi.pxe->UNDICode.Seg_Size;
            }
            if ( undi.driver_data == NULL ) {
                  undi.driver_data = VIRTUAL(undi.pxe->UNDIData.Seg_Addr,
                                       0 );
                  undi.driver_data_size = undi.pxe->UNDIData.Seg_Size;
            }
            
            /* Ignore errors and continue in the hope of shutting
             * down anyway
             */
            if ( undi.opened ) eb_pxenv_undi_close();
            if ( undi.started ) {
                  eb_pxenv_undi_cleanup();
                  /* We may get spurious UNDI API errors at this
                   * point.  If startup() succeeded but
                   * initialize() failed then according to the
                   * spec, we should call shutdown().  However,
                   * some NICS will fail with a status code
                   * 0x006a (INVALID_STATE).
                   */
                  eb_pxenv_undi_shutdown();
            }
            if ( undi.irq != IRQ_NONE ) {
                  remove_undi_irq_handler ( undi.irq );
                  undi.irq = IRQ_NONE;
            }
            undi_unload_base_code();
            if ( undi.prestarted ) {
                  eb_pxenv_stop_undi();
                  /* Success OR Failure indicates that memory
                   * can be freed.  Any other status code means
                   * that it can't.
                   */
                  if (( undi.pxs->Status == PXENV_STATUS_KEEP_UNDI ) ||
                      ( undi.pxs->Status == PXENV_STATUS_KEEP_ALL ) ) {
                        printf ("Could not free memory allocated to "
                              "UNDI driver: possible memory leak\n");
                        return 0;
                  }
            }
      }
      /* Free memory allocated to UNDI driver */
      if ( undi.driver_code != NULL ) {
            /* Clear contents in order to eliminate !PXE and PXENV
             * signatures to prevent spurious detection via base
             * memory scan.
             */
            memset ( undi.driver_code, 0, undi.driver_code_size );
            forget_base_memory ( undi.driver_code, undi.driver_code_size );
            undi.driver_code = NULL;
            undi.driver_code_size = 0;
      }
      if ( undi.driver_data != NULL ) {
            forget_base_memory ( undi.driver_data, undi.driver_data_size );
            undi.driver_data = NULL;
            undi.driver_data_size = 0;
      }
      /* !PXE structure now gone; memory freed */
      undi.pxe = NULL;
      return 1;
}

/**************************************************************************
POLL - Wait for a frame
***************************************************************************/
static int undi_poll(struct nic *nic, int retrieve)
{
      /* Fun, fun, fun.  UNDI drivers don't use polling; they use
       * interrupts.  We therefore cheat and pretend that an
       * interrupt has occurred every time undi_poll() is called.
       * This isn't too much of a hack; PCI devices share IRQs and
       * so the first thing that a proper ISR should do is call
       * PXENV_UNDI_ISR to determine whether or not the UNDI NIC
       * generated the interrupt; there is no harm done by spurious
       * calls to PXENV_UNDI_ISR.  Similarly, we wouldn't be
       * handling them any more rapidly than the usual rate of
       * undi_poll() being called even if we did implement a full
       * ISR.  So it should work.  Ha!
       *
       * Addendum (21/10/03).  Some cards don't play nicely with
       * this trick, so instead of doing it the easy way we have to
       * go to all the hassle of installing a genuine interrupt
       * service routine and dealing with the wonderful 8259
       * Programmable Interrupt Controller.  Joy.
       */

      /* See if a hardware interrupt has occurred since the last poll().
       */
      if ( ! undi_irq_triggered ( undi.irq ) ) return 0;

      /* Given the frailty of PXE stacks, it's probably not safe to
       * risk calling PXENV_UNDI_ISR with
       * FuncFlag=PXENV_UNDI_ISR_START twice for the same interrupt,
       * so we cheat slightly and assume that there is something
       * ready to retrieve as long as an interrupt has occurred.
       */
      if ( ! retrieve ) return 1;

#ifdef UNDI_NONTRIVIAL_IRQ
      /* With the nontrivial IRQ handler, we have already called
       * PXENV_UNDI_ISR with PXENV_UNDI_ISR_IN_START and determined
       * that it is one of ours.
       */
#else
      /* Ask the UNDI driver if this is "our" interrupt.
       */
      undi.pxs->undi_isr.FuncFlag = PXENV_UNDI_ISR_IN_START;
      if ( ! eb_pxenv_undi_isr() ) return 0;
      if ( undi.pxs->undi_isr.FuncFlag == PXENV_UNDI_ISR_OUT_NOT_OURS ) {
            /* "Not our interrupt" translates to "no packet ready
             * to read".
             */
            /* FIXME: Technically, we shouldn't be the one sending
             * EOI.  However, since our IRQ handlers don't yet
             * support chaining, nothing else gets the chance to.
             * One nice side-effect of doing this is that it means
             * we can cheat and claim the timer interrupt as our
             * NIC interrupt; it will be inefficient but will
             * work.
             */
            send_specific_eoi ( undi.irq );
            return 0;
      }
#endif

      /* At this stage, the device should have cleared its interrupt
       * line so we can send EOI to the 8259.
       */
      send_specific_eoi ( undi.irq );

      /* We might have received a packet, or this might be a
       * "transmit completed" interrupt.  Zero nic->packetlen,
       * increment whenever we receive a bit of a packet, test
       * nic->packetlen when we're done to see whether or not we
       * actually received anything.
       */
      nic->packetlen = 0;
      undi.pxs->undi_isr.FuncFlag = PXENV_UNDI_ISR_IN_PROCESS;
      if ( ! eb_pxenv_undi_isr() ) return 0;
      while ( undi.pxs->undi_isr.FuncFlag != PXENV_UNDI_ISR_OUT_DONE ) {
            switch ( undi.pxs->undi_isr.FuncFlag ) {
            case PXENV_UNDI_ISR_OUT_TRANSMIT:
                  /* We really don't care about transmission complete
                   * interrupts.
                   */
                  break;
            case PXENV_UNDI_ISR_OUT_BUSY:
                  /* This should never happen.
                   */
                  printf ( "UNDI ISR thinks it's being re-entered!\n"
                         "Aborting receive\n" );
                  return 0;
            case PXENV_UNDI_ISR_OUT_RECEIVE:
                  /* Copy data to receive buffer */
                  memcpy ( nic->packet + nic->packetlen,
                         VIRTUAL( undi.pxs->undi_isr.Frame.segment,
                                undi.pxs->undi_isr.Frame.offset ),
                         undi.pxs->undi_isr.BufferLength );
                  nic->packetlen += undi.pxs->undi_isr.BufferLength;
                  break;
            default:
                  printf ( "UNDI ISR returned bizzare status code %d\n",
                         undi.pxs->undi_isr.FuncFlag );
            }
            undi.pxs->undi_isr.FuncFlag = PXENV_UNDI_ISR_IN_GET_NEXT;
            if ( ! eb_pxenv_undi_isr() ) return 0;
      }
      return nic->packetlen > 0 ? 1 : 0;
}

/**************************************************************************
TRANSMIT - Transmit a frame
***************************************************************************/
static void undi_transmit(
      struct nic *nic __unused,
      const char *d,                /* Destination */
      unsigned int t,               /* Type */
      unsigned int s,               /* size */
      const char *p)                /* Packet */
{
      /* Copy destination to buffer in base memory */
      memcpy ( undi.xmit_data->destaddr, d, sizeof(MAC_ADDR) );

      /* Translate packet type to UNDI packet type */
      switch ( t ) {
      case IP :  undi.pxs->undi_transmit.Protocol = P_IP;   break;
      case ARP:  undi.pxs->undi_transmit.Protocol = P_ARP;  break;
      case RARP: undi.pxs->undi_transmit.Protocol = P_RARP; break;
      default: printf ( "Unknown packet type %hx\n", t );
            return;
      }

      /* Store packet length in TBD */
      undi.xmit_data->tbd.ImmedLength = s;

      /* Check to see if data to be transmitted is currently in base
       * memory.  If not, allocate temporary storage in base memory
       * and copy it there.
       */
      if ( SEGMENT( p ) <= 0xffff ) {
            undi.xmit_data->tbd.Xmit.segment = SEGMENT( p );
            undi.xmit_data->tbd.Xmit.offset = OFFSET( p );
      } else {
            memcpy ( undi.xmit_buffer, p, s );
            undi.xmit_data->tbd.Xmit.segment = SEGMENT( undi.xmit_buffer );
            undi.xmit_data->tbd.Xmit.offset = OFFSET( undi.xmit_buffer );
      }

      eb_pxenv_undi_transmit_packet();
}

/**************************************************************************
DISABLE - Turn off ethernet interface
***************************************************************************/
static void undi_disable ( struct dev *dev __unused ) {
      undi_full_shutdown();
      free_base_mem_data();
}

/**************************************************************************
PROBE - Look for an adapter, this routine's visible to the outside
***************************************************************************/

/* Locate an UNDI driver by first scanning through base memory for an
 * installed driver and then by scanning for UNDI ROMs and attempting
 * to install their drivers.
 */

static int hunt_pixies_and_undi_roms ( void ) {
      static uint8_t hunt_type = HUNT_FOR_PIXIES;
      
      if ( hunt_type == HUNT_FOR_PIXIES ) {
            if ( hunt_pixie() ) {
                  return 1;
            }
      }
      hunt_type = HUNT_FOR_UNDI_ROMS;
      while ( hunt_undi_rom() ) {
            if ( undi_loader() ) {
                  return 1;
            }
            undi_full_shutdown(); /* Free any allocated memory */
      }
      hunt_type = HUNT_FOR_PIXIES;
      return 0;
}

/* The actual Etherboot probe routine.
 */

static int undi_probe(struct dev *dev, struct pci_device *pci)
{
      struct nic *nic = (struct nic *)dev;

      /* Zero out global undi structure */
      memset ( &undi, 0, sizeof(undi) );

      /* Store PCI parameters; we will need them to initialize the
       * UNDI driver later.  If not a PCI device, leave as 0.
       */
      if ( pci ) {
            memcpy ( &undi.pci, pci, sizeof(undi.pci) );
      }

      /* Find the BIOS' $PnP structure */
      if ( ! hunt_pnp_bios() ) {
            /* Not all PXE stacks actually insist on a PnP BIOS.
             * In particular, an Etherboot PXE stack will work
             * just fine without one.
             *
             * We used to make this a fatal error, but now we just
             * warn and continue.  Note that this is necessary in
             * order to be able to debug the Etherboot PXE stack
             * under Bochs, since Bochs' BIOS is non-PnP.
             */
            printf ( "WARNING: No PnP BIOS found\n" );
      }

      /* Allocate base memory data structures */
      if ( ! allocate_base_mem_data() ) return 0;

      /* Search thoroughly for UNDI drivers */
      for ( ; hunt_pixies_and_undi_roms(); undi_full_shutdown() ) {
            /* Try to initialise UNDI driver */
            printf ( "Initializing UNDI driver.  Please wait...\n" );
            if ( ! undi_full_startup() ) {
                  if ( undi.pxs->Status ==
                       PXENV_STATUS_UNDI_MEDIATEST_FAILED ) {
                        printf ( "Cable not connected (code %#hx)\n",
                               PXENV_STATUS_UNDI_MEDIATEST_FAILED );
                  }
                  continue;
            }
            /* Basic information: MAC, IO addr, IRQ */
            if ( ! eb_pxenv_undi_get_information() ) continue;
            printf ( "Initialized UNDI NIC with IO %#hx, IRQ %d, MAC %!\n",
                   undi.pxs->undi_get_information.BaseIo,
                   undi.pxs->undi_get_information.IntNumber,
                   undi.pxs->undi_get_information.CurrentNodeAddress );
            /* Fill out MAC address in nic structure */
            memcpy ( nic->node_addr,
                   undi.pxs->undi_get_information.CurrentNodeAddress,
                   ETH_ALEN );
            /* More diagnostic information including link speed */
            if ( ! eb_pxenv_undi_get_iface_info() ) continue;
            printf ( "NDIS type %s interface at %d Mbps\n",
                   undi.pxs->undi_get_iface_info.IfaceType,
                   undi.pxs->undi_get_iface_info.LinkSpeed / 1000000 );
            dev->disable  = undi_disable;
            nic->poll     = undi_poll;
            nic->transmit = undi_transmit;
            return 1;
      }
      undi_disable ( dev ); /* To free base memory structures */
      return 0;
}

static int undi_isa_probe ( struct dev *dev,
                      unsigned short *probe_addrs __unused ) {
      return undi_probe ( dev, NULL );
}


/* UNDI driver states that it is suitable for any PCI NIC (i.e. any
 * PCI device of class PCI_CLASS_NETWORK_ETHERNET).  If there are any
 * obscure UNDI NICs that have the incorrect PCI class, add them to
 * this list.
 */
static struct pci_id undi_nics[] = {
      /* PCI_ROM(0x0000, 0x0000, "undi", "UNDI adaptor"), */
};

static struct pci_driver undi_driver __pci_driver = {
      .type     = NIC_DRIVER,
      .name     = "UNDI",
      .probe    = undi_probe,
      .ids      = undi_nics,
      .id_count = sizeof(undi_nics)/sizeof(undi_nics[0]),
      .class    = PCI_CLASS_NETWORK_ETHERNET,
};

static struct isa_driver undi_isa_driver __isa_driver = {
      .type     = NIC_DRIVER,
      .name     = "UNDI",
      .probe    = undi_isa_probe,
      .ioaddrs  = 0,
};

#endif /* PCBIOS */

Generated by  Doxygen 1.6.0   Back to index